
Gaussian Cheat Sheet with Python
Steve Witham ess doubleyou at tiac notthis dot net 2020-10-20

You know that Gaussian and normal distributions are the same thing. You know the difference
between probability density (PDF), its integral (CDF), one minus the CDF, and the inverse of the
CDF, and what you might want each of those for. You need to know the scale constants and
what to import in Python, simply organized in one place in a uniform format. If so, you have
come to the right place.

Please let me know if you find mistakes here.

But then different communities, personality types, and/or periods of history have different ideas
of what default scale and offset to use on each of these, and what to call them all.

With Python, which standard library you get the related functions from is random, and which of
the competing scaling/ offset versions is available is random. The scipy library gives
(systematic, but) new dotted names to all the functions, going outside the Python function-
importing conventions.

The quotations here are from Wikipedia articles Normal_distribution,
Sum_of_normally_distributed_random_variables, Error_function, Quantile_function, and Q-
function.

This is rendered from a Jupyter notebook. Most of the equations were copy-pasted from their
Wikipedia pages into the (MathJax enabled) Markdown notebook source.

Contents
Standard Normal Distribution PDF
Generalized/Parameterized Normal PDF
PDF of a Sum, aka Convolution of PDFs
Normal Distribution CDF
Error Function: erf()

erf() 's derivative
erf() 's complement erfc()
erf() 's inverse, erfinv()

Standard Normal CDF via erf()
Parameterized Normal CDF via erf()

PDF
CDF

1 − CDF
CDF−1

= Probability Density Function,
= Cumulative Distribution Function

(see what they did with the D there),
= the complement, and
= the inverse.

Quantile, Probit, Percent Point, Inverse CDF
Q-function and
Appendix 1: Python Code to Import or else Define erfinv()
Appendix 2: Code for the illustrations

Standard Normal Distribution PDF

... is often denoted with the Greek letter (phi). The alternative form of the
Greek letter phi, , is also used quite often.

The simplest case of a normal distribution is known as the standard normal
distribution. This is a special case when and

, and it is described by this PDF:

(There are competing "standard" normal distributions, with or even
 instead of .)

from scipy.stats import norm
norm.pdf(x)

Generalized/Parameterized Normal PDF

!−1

"
#

$[mean] = 0
%[standard deviation] = 1

#(&) = 1
2'⎯ ⎯⎯⎯√
(−

1
2
&2

[the variance] = 1/2%2

= 1/(2')%2 = % = 1%2

Every normal distribution is a version of the standard normal distribution whose
domain has been stretched by a factor (the standard deviation) and then
translated by (the mean value):

The probability density must be scaled by so that the integral is still 1.

from scipy.stats import norm
norm.pdf(x, loc= , scale=)

PDF of a Sum, aka Convolution of PDFs

Let X and Y be independent random variables that are normally distributed (and
therefore also jointly so), then their sum is also normally distributed. i.e., if

then

This means that the sum of two independent normally distributed random
variables is normal, with its mean being the sum of the two means, and its
variance being the sum of the two variances (i.e., the square of the standard
deviation is the sum of the squares of the standard deviations).

This is not an average or weighted sum of PDFs, nor a Gaussian approximation to that, nor a
product of PDFs, all of which would be good to have on hand.

Standard Normal CDF

%
$

)(& ∣ $,) = # () .%2 1
%

& − $
%

1/%

$ %

* ∼ +(,)$* %
2
*

, ∼ +(,)$, %
2
,

- = * + , ,

- ∼ +(+ , +).$* $, %
2
* %2

,

The CDF is always the integral of the corresponding PDF. The standard normal CDF...

...usually denoted with the capital Greek letter (phi), is the integral

from scipy.stats import norm
norm.cdf(x, loc= , scale=)

The parameterized normal CDF is covered below.

Error Function: erf()

Φ

Φ(&) = ./
1
2'⎯ ⎯⎯⎯√ ∫

&

−∞
(−

1
2
/2

$ %

The "error function" resembles a CDF and and is included in some math libraries that
don't include the normal CDF. gives the probability of a random variable with normal
distribution of mean 0 and variance 1/2 falling in the range (and because of how definite
integrals work, the probability is negative if); that is

Ways to calculate various CDF-related functions using erf() and erfc() are given below.

from math import erf

erf() 's complement erfc()

Used to get extra-precise values for the distance between erf(x) and 1.

from math import erfc

erf() 's derivative

The derivative of is like a PDF except that its integral from -oo to +oo is two rather than
one:

I use this in the erfinv() code below.

erf() 's inverse, erfinv()

erf(&)
erf(&)

[−&, &]
& < 0

erf(&) = ./
1
'
⎯⎯√ ∫

&

−&
(−/

2

erfc(&) = 1 − erf(&)

erf(/)

2
'
⎯⎯√
(−/

2

Python code to import or supply erfinv() is in the appendix below.

Standard Normal CDF via erf()

Capital Phi () and erf() are closely related, namely

This is more precise when x < 0; using erfc():
def std_norm_CDF(x):

 return .5 * (erfc(-x) / sqrt(2))

Parameterized Normal CDF via erf()

For a generic normal distribution with mean and deviation , the CDF is

This is more precise when x < loc; using erfc():
def norm_CDF(x, loc=0, scale=1):

 return .5 * (erfc(-x + loc) / (scale * sqrt(2))

Φ

Φ(&) = [1 + erf()]1
2

&

2⎯⎯√

$ %

0 (&) = Φ () = [1 + erf()]& − $
%

1
2

& − $
% 2⎯⎯√

Quantile, Probit, Percent Point, Inverse CDF

The quantile function of a distribution is the inverse of the cumulative
distribution function. The quantile function of the standard normal distribution is
called the probit function, and can be expressed in terms of the inverse error
function:

For a normal random variable with mean and variance , the quantile
function is

from scipy.stats import norm
norm.ppf(p, loc= , scale=) ("Percent Point Function.")

-function and

The complement [complement inverse] of the standard normal CDF,
, is often called the Q-function.

 is useful to get an accurate distance from one when is getting close to one.

from math import erfc (complement of erf , not of norm.cdf)

from scipy.stats import norm
norm.sf(x, loc= , scale=) ("Survival Function").

(1) = (21 − 1), 1 ∈(0, 1).Φ−1 2⎯⎯√ erf−1

$ %2

(1) = $ + % (1) = $ + % (21 − 1), 1 ∈(0, 1).0 −1 Φ−1 2⎯⎯√ erf−1

$ %

! !−1

≠
!(&) = 1 − Φ(&)

!(&) Φ(&)

$ %

The inverse Q-function can be related to the inverse error functions:

from scipy.stats import norm
norm.isf(y, loc= , scale=) ("Inverse Survival Function").

Appendix 1: Python code to import or else define erfinv()

This Python code either imports erfinv from scipy , or defines a function to calculate it
accurately (though less quickly).

from math import erf

try:
 from scipy.special import erfinv
 from scipy.stats import norm
 # norm.pdf(x, loc=0, scale=1)
 # norm.logpdf(x, loc=0, scale=1)
 # norm.cdf(x, loc=0, scale=1)
 # norm.logcdf(x, loc=0, scale=1)
 # norm.ppf(q, loc=0, scale=1) # Percent point (cdf^-1)
except:
 from math import pi, log, sqrt, exp, copysign

 ERFINV_A = (8 * (pi - 3)) / (3 * pi * (4 - pi)) # ~0.140012
 SQRTPI_2 = sqrt(pi) / 2

 def erfinv(y):
 # Method by Sergei Winitzki from
 # https://en.wikipedia.org/wiki/Error_function
 b = log(1 - y**2)
 c = 2 / (pi * ERFINV_A) + b / 2
 absx = sqrt(sqrt(c**2 - b / ERFINV_A) - c)
 x = copysign(absx, y)

 # Method by Newton, Raphson, and Simpson.
 # The slope of erf(x) is 2/sqrt(pi) * exp(-x**2).
 # Its inverse is sqrt(pi)/2 * exp(x**2).
 x += (y - erf(x)) * SQRTPI_2 * exp(x**2)
 invslope = SQRTPI_2 * exp(x**2)
 x += (y - erf(x)) * invslope
 x += (y - erf(x)) * invslope
 return x

(2) = (1 − 22) = (22)!−1 2⎯⎯√ erf−1 2⎯⎯√ erfc−1

$ %

A small test.
for x in .25, .5, .75, 7/8:
 for f, g in (erfinv, erf), (erf, erfinv):
 y = f(x); z = g(y)
 err = "" if z == x else "%+g" % (z - x)
 print("%r-%s->%r-%s->%r%s" % \
 (x, f.__name__, y, g.__name__, x, err))
 print()

0.25-erfinv->0.22531205501217813-erf->0.25
0.25-erf->0.2763263901682369-erfinv->0.25

0.5-erfinv->0.47693627620447-erf->0.5
0.5-erf->0.5204998778130465-erfinv->0.5

0.75-erfinv->0.8134198475976185-erf->0.75+1.11022e-16
0.75-erf->0.7111556336535152-erfinv->0.75

0.875-erfinv->1.084787040069283-erf->0.875
0.875-erf->0.7840750610598597-erfinv->0.875+1.11022e-16

0.99999999-erfinv->4.052237242936266-erf->0.99999999
0.99999999-erf->0.8427007887986399-erfinv->0.99999999+1.11022e-1
6

Appendix 2: Code for the illustrations
from math import sqrt, pi, erf, erfc
try:
 from scipy.stats import norm
 # norm.pdf(x, loc= ! , scale= ")
 norm_PDF = norm.pdf
 norm_CDF = norm.cdf
except:
 def norm_PDF(x, loc=0, scale=1):
 numerator = exp(-((x - loc) / scale) ** 2 / 2)
 return numerator / (scale * sqrt(2 * pi))

 def norm_CDF(x, loc=0, scale=1):
 return .5 * (erfc((-x + loc) / (scale * sqrt(2))))

def Q(x, loc=0, scale=1):
 return norm_CDF(-x, loc=-loc, scale=scale)

import matplotlib.pyplot as plt

from numpy import linspace

def plot_f(f, title=None, invert=False):
 width, height = 6, 4
 if invert:
 width, height = height, width
 plt.figure(figsize=(width, height), dpi=75)
 plt.rcParams.update({
 "figure.facecolor": (1.0, 1.0, 1.0, 1),
 "axes.facecolor": (1.0, 1.0, 1.0, 1),
 "axes.edgecolor": (0.0, 0.0, 0.0, 1),
 "savefig.facecolor": (1.0, 1.0, 1.0, 1),
 })
 art = plt.gcf().gca()
 art.axhline(color=(.75, .75, .75)) # Show the x axis.
 if title:
 plt.title(title)
 xs = linspace(-3, 3, num=128)
 ys = [f(x) for x in xs]
 if invert:
 xs, ys = ys, xs
 plt.plot(xs, ys)

plot_f(norm_PDF, title="Standard Normal PDF")
plot_f(norm_CDF, title="Standard Normal CDF")
plot_f(Q, title="Q(x) = 1 - normal_CDF(x)")
plot_f(erf, title="Error Function erf(x)")
plot_f(erfc, title="erf compliment: erfc(x) = 1 - erf(x)")
plot_f(erf, invert=True, title="Inverse Error Function erfinv(x)
")
plt.show()

