
Hyperbolic pairing function
--Steve Witham 2020-03-30.

Paper v0.4. Function v0.
The previous version, the first sent to others, had no version number.

Changes since then:

Explicit about which "hyperbolas," in the intro.
Consistently , .

Not fixed:

Detail how  but .

A pairing function is an  that takes two numbers (in our case any two positive integers) and
somehow encodes them uniquely into a number . Then an inverse function  gives back the
pair .

The granddad of pairing functions, Georg Cantor's, indexes pairs by scanning  diagonals
in an x, y grid. Here we define a pairing that scans  hyperbolas that pass through integer
points, for which the sequence  in https://oeis.org/A006218 (https://oeis.org/A006218) is
helpful. This definition (one of several there)...

means that the half-open interval  has just enough room for those pairs whose
product is . If we but assign the pairs locations within the interval, a pairing function is defined.
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Digression about harmonic numbers

Encoding 

To encode a pair , first let

Arrange the prime-power factors of  in the usual way

 and  are products of different powers of the same 's:

Encode 's "  digits in base ," viz, and bada-boom,

(I believe this is easier than, e.g., enumerating all the possible 's and sorting them by . And n.b.,
that would give a different ordering.)

Decoding
Given , the encoded number, find , the greatest number such that . Factor 
arranging the primes in increasing order, then decode the "digits" of :

Finally, , and .

Cost in bits
The encoded value of a pair is in a range

There are some whole number  pairs for which . In such cases an -bit number can
encode just the pairs from (1, 1) through those where . So it seems fair in general to say 

 "costs"  a.k.a.  bits.

We might expect the cost of  to be  bits, plus some overhead. What's the
overhead? Skipping ahead some (see "calculating... approximately" below),



which indeed is

(Mumble about how the  part is the cost of choosing how many of 's bits belong to  vs. 
, amortized across 's with different numbers of divisors.)

This "hyperbolic pairing" packs the number line without gaps, and assigns  pairs in  order,
which is to say in  order. So I believe the "cost function" above, with its slightly
mysterious overhead, is optimal for pairings that aim for that " " property.

(Add some small and big examples.)

Calculating 

Exactly

The formula I'm using for  takes  time:

Belatedly noticed that Charles R Greathouse IV gives this formula in PARI on the OEIS page. He
also gives references to two  methods. (And summarizes the proven bounds on the value of

, below).

Approximately

The approximation everyone uses is:

But see "digression about harmonic numbers" below.

Bounds on 

Having bounds on the function helps to invert the function.

From https://oeis.org/A006218 (https://oeis.org/A006218) :

Let E(n) = a(n) - n(log n + 2 gamma - 1). Then Berkane-Bordellès-Ramaré show that

|E(n)| <= 0.961 sqrt(n),
|E(n)| <= 0.397 sqrt(n) for n > 5559, and
|E(n)| <= 0.764 n^(1/3) log n for x > 9994.

-Charles R Greathouse IV Oct 02 2017



It seems that . It certainly is for n <= 20000. Since  is monotonic, starting a
search with those assumed bounds would quickly notice any exception. See also "approximating
the inverse" in the next section.

Calculating the inverse 

This means search

I don't know a better answer than the Newtonish binary search I'm using, whose time is 
 or . The square or cube root from the forward function is the

worst contributor to this sorry situation. Having a good estimate and good bounds cuts the time
(but only) by a constant factor. Also, it helps that  is strictly increasing (if fractal).

Approximating the inverse

One inverts the approximator. (See "approximately", above.) Although Newton's method would
work, instead I cribbed this fixed-point method from Stack Overflow:

def inv_guess_a(c): 
    if c < 2: 
        return c 
 
    n = c 
    for k in range(10): 
        n = c / (log(n) + 2 * euler_gamma - 1) 
    return n

Bounds on 

Given  and the inv_guess_a  function just above, my inverse search function gets itself rolling
by setting high and low bounds on , and a guess in the middle, like this:

delta_c = 3 * c**(1/4) 
n_low_bound = inv_guess_a(c - delta_c) 
n_guess = inv_guess_a(c) 
n_high_bound = inv_guess_a(c + delta_c)

Fourth-root bounds mean that 3/4 of the result bits have already been found. But down in the low
bits fractals loom, and estimates of the derivative get worse instead of better.

Digression about harmonic numbers
One of the definitions of  is

while that of the harmonic numbers is



And (this is mentioned on the OEIS page) using  gives a slightly better approximation to 
(especially with the first few numbers) than the log-based approximation:

Meanwhile (this is exact)

I guess the reason the log version is popular is that  only helps approximate , and the log
approximates , so skip the middleman. Also, at least with the math libraries I have, the
digamma takes fifteen times as long to run as the log does.


